Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 933: 173068, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38723965

RESUMO

Cadmium (Cd) is an extremely toxic heavy metal that can originate from industrial activities and accumulate in agricultural soils. This study investigates the potential of biologically synthesized silicon oxide nanoparticles (Bio-SiNPs) in alleviating Cd toxicity in bayberry plants. Bio-SiNPs were synthesized using the bacterial strain Chryseobacterium sp. RTN3 and thoroughly characterized using advanced techniques. A pot experiment results demonstrated that Cd stress substantially reduced leaves biomass, photosynthesis efficiency, antioxidant enzyme activity, and induced oxidative damage in bayberry (Myrica rubra) plants. However, Bio-SiNPs application at 200 mg kg-1 significantly enhanced plant biomass, chlorophyll content (26.4 %), net photosynthetic rate (8.6 %), antioxidant enzyme levels, and mitigated reactive oxygen species production under Cd stress. Bio-SiNPs modulated key stress-related phytohormones by increasing salicylic acid (13.2 %) and abscisic acid (13.7 %) contents in plants. Bio-SiNPs augmented Si deposition on root surfaces, preserving normal ultrastructure in leaf cells. Additionally, 16S rRNA gene sequencing demonstrated that Bio-SiNPs treatment favorably reshaped structure and abundance of specific bacterial groups (Proteobacteria, Actinobacteriota, and Acidobacteriota) in the rhizosphere. Notably, Bio-SiNPs application significantly modulated the key metabolites (phenylacetaldehyde, glycitein, maslinic acid and methylmalonic acid) under both normal and Cd stress conditions. Overall, this study highlights that bio-nanoremediation using Bio-SiNPs enhances tolerance to Cd stress in bayberry plants by beneficially modulating biochemical, microbial, and metabolic attributes.

2.
Nanomaterials (Basel) ; 14(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38668204

RESUMO

The biosynthesis of silver nanoparticles (AgNPs) using plant extracts has become a safe replacement for conventional chemical synthesis methods to fight plant pathogens. In this study, the antifungal activity of biosynthesized AgNPs was evaluated both in vitro and under greenhouse conditions against root rot fungi of common beans (Phaseolus vulgaris L.), including Macrophomina phaseolina, Pythium graminicola, Rhizoctonia solani, and Sclerotium rolfsii. Among the eleven biosynthesized AgNPs, those synthesized using Alhagi graecorum plant extract displayed the highest efficacy in suppressing those fungi. The findings showed that using AgNPs made with A. graecorum at a concentration of 100 µg/mL greatly slowed down the growth of mycelium for R. solani, P. graminicola, S. rolfsii, and M. phaseolina by 92.60%, 94.44%, 75.93%, and 79.63%, respectively. Additionally, the minimum inhibitory concentration (75 µg/mL) of AgNPs synthesized by A. graecorum was very effective against all of these fungi, lowering the pre-emergence damping-off, post-emergence damping-off, and disease percent and severity in vitro and greenhouse conditions. Additionally, the treatment with AgNPs led to increased root length, shoot length, fresh weight, dry weight, and vigor index of bean seedlings compared to the control group. The synthesis of nanoparticles using A. graecorum was confirmed using various physicochemical techniques, including UV spectroscopy, Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) analysis. Collectively, the findings of this study highlight the potential of AgNPs as an effective and environmentally sustainable approach for controlling root rot fungi in beans.

3.
Anal Chem ; 95(30): 11287-11295, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37459591

RESUMO

A novel virtual screening strategy was proposed for the profiling and discovery of active variable regions (VRs) that encode hapten-specific recombinant antibodies (rAbs). Chlorpyrifos, a hazardous organophosphorus pesticide, was selected as the target. First, a VR model-14G4 from anti-chlorpyrifos hybridoma was built via homology modeling. Its binding pattern toward seven organophosphorus analogues was assessed through virtual screening by performing molecular docking. Based on energy scoring, visual examination, and molecular interaction analysis, chlorpyrifos-methyl was also inferred as the high-affinity target for model-14G4 and was then confirmed via a non-competitive surface plasmon resonance (SPR) assay. Subsequently, we attempted to discover hapten-specific VRs by creating a collection of VR models for anonymous testing. Chlorpyrifos and model-14G4 were employed as the known hit and active VRs, respectively. After molecular docking, a novel anti-chlorpyrifos VR (model-1) was identified due to its satisfactory energy scoring and a similar binding pattern to the reference model-14G4. Expressed by HEK293(F) mammalian cells, the newly prepared full-length rAb-model-1 and rAb-14G4 exhibited high sensitivities for detecting chlorpyrifos by the indirect competitive enzyme-linked immunosorbent assay (ic-ELISA), with IC50 of 3.01 ng/mL and 42.82 ng/mL, respectively. They recognized chlorpyrifos-methyl with a cross-reactivity (CR) of 2.5-17.3%. Moreover, the binding properties of rAb-model-1 for recognizing chlorpyrifos and chlorpyrifos-methyl were confirmed via a non-competitive microscale thermophoresis (MST) method. Thus, the experimental results showed good agreement with computational outputs on antibody profiling. Furthermore, the recognition diversity of rAb-model-1 for chlorpyrifos and chlorpyrifos-methyl was studied via molecular dynamics simulation. Overall, the proposed study provides a versatile and economical strategy for antibody characterization and promotes the in vitro production of rAbs for pesticide monitoring.


Assuntos
Praguicidas , Animais , Humanos , Simulação de Acoplamento Molecular , Compostos Organofosforados , Células HEK293 , Imunoensaio/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Proteínas Recombinantes , Haptenos , Mamíferos
4.
Plants (Basel) ; 12(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37375902

RESUMO

Some endophyte bacteria can improve plant growth and suppress plant diseases. However, little is known about the potential of endophytes bacteria to promote wheat growth and suppress the Fusarium seedling blight pathogen Fusarium graminearum. This study was conducted to isolate and identify endophytic bacteria and evaluate their efficacy for the plant growth promotion and disease suppression of Fusarium seedling blight (FSB) in wheat. The Pseudomonas poae strain CO showed strong antifungal activity in vitro and under greenhouse conditions against F. graminearum strain PH-1. The cell-free supernatants (CFSs) of P. poae strain CO were able to inhibit the mycelium growth, the number of colonies forming, spore germination, germ tube length, and the mycotoxin production of FSB with an inhibition rate of 87.00, 62.25, 51.33, 69.29, and 71.08%, respectively, with the highest concentration of CFSs. The results indicated that P. poae exhibited multifarious antifungal properties, such as the production of hydrolytic enzymes, siderophores, and lipopeptides. In addition, compared to untreated seeds, wheat plants treated with the strain showed significant growth rates, where root and shoot length increased by about 33% and the weight of fresh roots, fresh shoots, dry roots, and dry shoots by 50%. In addition, the strain produced high levels of indole-3-acetic acid, phosphate solubilization, and nitrogen fixation. Finally, the strain demonstrated strong antagonistic properties as well as a variety of plant growth-promoting properties. Thus, this result suggest that this strain could be used as an alternate to synthetic chemicals, which can serve as an effective method of protecting wheat from fungal infection.

5.
BMC Microbiol ; 13: 87, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23594351

RESUMO

BACKGROUND: The prevalence of drug-resistant bacteria has encouraged the search for novel antimicrobial compounds. Food-associated microorganisms, as a source of new antibiotics, have recently received considerable attention. The objective of this study was to find novel antimicrobial agents produced by food microorganisms. RESULTS: A bacterial strain B7, which has potent antimicrobial activity, was isolated from a sample of dairy waste. This strain was identified as Paenibacillus ehimensis based on the 16S rRNA gene sequence analysis, physiological and biochemical characterization. Two active compounds (PE1 and PE2) were obtained from P. ehimensis B7. Mass spectrometry (MS) analysis showed that the molecular masses of PE1 and PE2 were 1,114 and 1,100 Da, respectively. The tandem MS and amino acid analysis indicated that PE1 and PE2 were analogs of polypeptin, and PE2 was characterized as a new member of this family. Both compounds were active against all tested bacterial pathogens, including methicillin resistant Staphylococcus aureus, Escherichia coli, and pan-drug resistant Pseudomonas aeruginosa clinical isolate. Time-kill assays demonstrated that at 4 × MIC (minimum inhibitory concentration), PE1 and PE2 rapidly reduced the number of viable cells by at least 3-orders of magnitude, indicating that they were bactericidal antibiotics. CONCLUSIONS: In the present work, two cationic lipopeptide antibiotics (PE1 and PE2) were isolated from P. ehimensis B7 and characterized. These two peptides showed broad antimicrobial activity against all tested human pathogens and are worthy of further study.


Assuntos
Antibacterianos/biossíntese , Lipopeptídeos/biossíntese , Paenibacillus/química , Sequência de Aminoácidos , Antibacterianos/química , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Escherichia coli/efeitos dos fármacos , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Paenibacillus/isolamento & purificação , Pseudomonas aeruginosa/efeitos dos fármacos , Espectrometria de Massas em Tandem
6.
J Chromatogr A ; 1218(38): 6663-6, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21831390

RESUMO

This paper presents a rapid analytical method for the simultaneous determination of flonicamid and its metabolites N-(4-trifluoromethylnicotinoyl) glycine (TFNG), 4-trifluoromethylnicotinic acid (TFNA), and 4-trifluoromethylnicotinamide (TFNA-AM) in vegetables using QuEChERS by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Samples were extracted with acetonitrile. The extract was purified through QuEChERS method with primary secondary amine (PSA) and graphite carbon black (GCB). Then the extract was diluted with 0.1% formic acid in water, and analyzed by LC-MS/MS on a Waters Acquity BEH C18 column with methanol/0.1% formic acid in water as mobile phase with gradient elution. The linearity of the analytical response across the studied range of concentrations (0.20-500 µg/L) was excellent, obtaining correlation coefficients higher than 0.998. No significant matrix effects were observed. Recovery studies were carried out on spiked spinach and cucumber blank samples, at four concentration levels (0.01, 0.05, 0.50 and 2.0 mg/kg) performing six replicates at each level. Mean recoveries of 81.3-94.8% with CVs of 2.4-7.0% were obtained. The method demonstrated to be suitable for the simultaneous determination of flonicamid and its metabolites in vegetables.


Assuntos
Fracionamento Químico/métodos , Cromatografia de Fase Reversa/métodos , Niacinamida/análogos & derivados , Resíduos de Praguicidas/análise , Espectrometria de Massas em Tandem/métodos , Verduras/química , Contaminação de Alimentos/análise , Niacinamida/análise , Niacinamida/isolamento & purificação , Niacinamida/metabolismo , Resíduos de Praguicidas/isolamento & purificação , Resíduos de Praguicidas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...